

Modeling in Baltimore Harbor

Technical Outreach

Prepared by

MDE/TARSA

Prepared for the Baltimore Harbor Stakeholder Advisory Group December 3, 2002

- Estimate Nonpoint Source Loads -
 - Model the watershed estimate loads from the land to the water
 - Provide inputs to the Harbor Models
 - Uses a Storm Water Management Model (SWMM)
- Simulate Fate of Toxics in Baltimore Harbor Harbor Models
 - Management/Screen (Box Model) UMCES
 - Hydrodynamics (water transport) and Sediment Transport
 - Toxic (Dissolved/Particulate)
 - Food Web
 - Detailed Assessment (Upper Bay Model) VIMS
 - Models entire Upper Bay to include exchange between the Harbor and the Bay
 - Hydrodynamics (water transport) and Sediment Transport
 - Toxic (Dissolved/Particulate)

Harbor Toxics Modeling Framework

Toxics – Nonpoint Source Load

Storm Water Management Model (SWMM)

- Completed : Chromium, Lead, Zinc
 - Internal/External Review Completed
- UNDER DEVELOPMENT : PCB

Toxics – Point Source Load Percent Distribution of Industrial Point Sources

Toxics – Nonpoint Source Load Percent Distribution of Nonpoint Sources

Toxics -

Relative Contributions of Point and Nonpoint Sources

UMCES – Toxic Box Model

- Model Status
 - Hydrodynamic/Sediment Transport
 - Linking Nonpoint Source and Point Source Loads Completed
 - Mass Balance Check Completed
 - Transfer Coefficients Calculation Completed
 - Sediment Transport Sensitivity Test
 - Toxic Box/Foodweb
 - Linking Nonpoint Source and Point Source Loads Completed
 - Sensitivity Test
 - Linking Hydrodynamic/Sediment Transport Model

Harbor Toxic Modeling Framework VIMS – Upper Bay Model

Model Status

- Hydrodynamic/Sediment Transport Completed
 - Incorporating Nonpoint and Point Sources
- ToxiWasp (simulating fate of toxic) In Progress
 - Incorporate the numerical Quickest Scheme into the toxic model –
 Completed
 - Implementation of Toxic Model cell mapping structure Completed
 - Code testing for sediment toxicant transport Completed
 - Linkage between hydrodynamic/sediment and toxic models -Completed
 - Incorporating Nonpoint and Point Sources Completed
 - Calibration
 - Sensitivity analysis

Toxic Point Source Loading to VIMS Model

Note: Point Source loadings from each outfall of the listed industries. They are distributed to the closest model cells.

Toxic Nonpoint Source Loading to VIMS Model

Note: Non-point source loadings from the watershed segments. They are evenly distributed to their adjacent model cells.

Harbor Toxic Modeling Framework VIMS –Hydrodynamic/Sediment Model Calibration stations

Harbor Sampling Stations

TSS Calibration - Harbor Mouth

TSS Calibration - Inner NW Branch

TSS Calibration - Middle Branch

22

Metal Calibration

Metal	Partition Coefficient (10 ⁴ l/kg)
Pb	5.9
Zn	4.6
Cr	21.7

Pb Calibration - Harbor Mouth

Pb Calibration - Hawkins Point

Pb Calibration - Inner Harbor

Zn Calibration - Inner Harbor

Zn Calibration - Lower Curtis Creek

Cr Calibration - Harbor Mouth

Cr Calibration - Lower Curtis Creek

Cr Calibration - Inner Harbor

VIMS Toxic Modeling - Summary

- The simulation of TSS, Pb, Zn, and Cr for 2000 has been performed.
- The TSS simulation results appear reasonable throughout the model domain.
- Pb and Zn are well-predicted in the middle and lower Harbor, but over-predicted in Inner Harbor.
- Cr is well-predicted in Inner Harbor and underpredicted in the lower Harbor.

Harbor Toxic TMDLs: Progress/Future Actions

Progress to Date

- Point Source Loads
- Nonpoint Source Loads (SWMM)
- UMCES Harbor Hydrodynamic/Sediment Transport Model
- VIMS Upper Bay Hydrodynamic/Sediment Transport Model

Future Actions

- UMCES Harbor Box Model
- VIMS Harbor Toxic Model for Metals
- Model Sensitivity Tests
- Scenarios

Harbor Eutrophication Modeling Program

- Estimate Nonpoint Source Loads Watershed Modeling
 - Hydrologic Simulation Program Fortran (HSPF) Completed
- Simulate Water Quality in Baltimore Harbor Harbor Modeling – Final Stage
 - A 3-D Hydrodynamic Model Curvilinear Hydrodynamic 3-Dimension (CH3D)
 - A 3-D Comprehensive Water Quality Model CE-QUAL-ICM
 - A Sediment Diagenesis Model

Current Eutrophication Model Status

 Watershed (HSPF) – Completed (Internal/External Review Completed)

- Hydrodynamic Model Completed
- Water Quality Model Refine Calibration

Problems:

- Overestimate DO concentration (End point = 5 mg/L)
- Underestimate Chlorophyll a concentration (End point = 50 ug/L)

Hypotheses/Tests:

- DO issue
 - The occurring of hypoxia is sensitive to the water depth
- Chlorophyll issue
 - Resuspension
 - Sediment initial concentration
 - Zooplankton grazing rate

Eutrophication Model – Calibration Sampling Stations

Eutrophication Model – Calibration Chla vs.Resuspension

Eutrophication Model – Calibration TOC vs. Resuspension

hliu 2-Sap-2001 16:03 hliu 11-Dac-200

Eutrophication Model – Calibration PN vs. Resuspension

MDE

Eutrophication Model – Calibration

Chla vs.Sediment Initial Concentration+Zooplankton Grazing Rate Harbor

MDE

Chla vs. Sediment Initial Concentration+Zooplankton Grazing Rate
Bear Creek

MDE

Chla vs. Sediment Initial Concentration+Zooplankton Grazing Rate
Curtis Creek

MDE

Chla vs.Sediment Initial Concentration+Zooplankton Grazing Rate
Middle Branch

MDE

Chla vs. Sediment Initial Concentration+Zooplankton Grazing Rate Inner Harbor

Harbor Nutrient TMDLs: Progress/Future Actions

Progress to Date

- Point Source Loads
- Nonpoint Source Loads (HSPF)
- Harbor Hydrodynamic Model
- Harbor Water Quality Model

Future Actions

- Refine Calibration
- Model Sensitivity Tests
- Scenarios